Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Amino Acids ; 54(5): 777-786, 2022 May.
Article En | MEDLINE | ID: mdl-35098378

BACKGROUND: Propionic acidemia is an inborn error of metabolism caused by a deficiency in the mitochondrial enzyme propionyl-CoA carboxylase that converts the propionyl CoA to methyl malonyl CoA. This leads to profound changes in distinct metabolic pathways, including the urea cycle, with consequences in ammonia detoxification. The implication of the tricarboxylic acid cycle is less well known, but its repercussions could explain both some of the acute and long-term symptoms of this disease. MATERIALS AND METHODS: The present observational study investigates the amino acid profiles of patients with propionic acidemia being monitored at the Hospital Ramón y Cajal (Madrid, Spain), between January 2015 and September 2017, comparing periods of metabolic stability with those of decompensation with ketosis and/or hyperammonemia. RESULTS: The concentrations of 19 amino acids were determined in 188 samples provided by 10 patients. We identified 40 metabolic decompensation episodes (22 only with ketosis and 18 with hyperammonemia). Plasma glutamine and alanine levels were reduced during these metabolic crises, probably indicating deficiency of anaplerosis (p < 0.001 for both alanine and glutamine). Hypocitrulllinemia and hypoprolinemia were also detected during hyperammonemia (p < 0.001 and 0.03, respectively). CONCLUSIONS: The amino acid profile detected during decompensation episodes suggests deficient anaplerosis from propionyl-CoA and its precursors, with implications in other metabolic pathways like synthesis of urea cycle amino acids and ammonia detoxification.


Amino Acid Metabolism, Inborn Errors , Hyperammonemia , Ketosis , Propionic Acidemia , Alanine , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acids , Ammonia , Glutamine , Humans , Propionic Acidemia/metabolism , Propionic Acidemia/pathology , Urea
2.
Am J Med Genet A ; 185(10): 2959-2975, 2021 10.
Article En | MEDLINE | ID: mdl-34117828

Idiopathic ketotic hypoglycemia (IKH) is a diagnosis of exclusion with glycogen storage diseases (GSDs) as a differential diagnosis. GSD IXa presents with ketotic hypoglycemia (KH), hepatomegaly, and growth retardation due to PHKA2 variants. In our multicenter study, 12 children from eight families were diagnosed or suspected of IKH. Whole-exome sequencing or targeted next-generation sequencing panels were performed. We identified two known and three novel (likely) pathogenic PHKA2 variants, such as p.(Pro869Arg), p.(Pro498Leu), p.(Arg2Gly), p.(Arg860Trp), and p.(Val135Leu), respectively. Erythrocyte phosphorylase kinase activity in three patients with the novel variants p.(Arg2Gly) and p.(Arg860Trp) were 15%-20% of mean normal. One patient had short stature and intermittent mildly elevated aspartate aminotransferase, but no hepatomegaly. Family testing identified two asymptomatic children and 18 adult family members with one of the PHKA2 variants, of which 10 had KH symptoms in childhood and 8 had mild symptoms in adulthood. Our study expands the classical GSD IXa phenotype of PHKA2 missense variants to a continuum from seemingly asymptomatic carriers, over KH-only with phosphorylase B kinase deficiency, to more or less complete classical GSD IXa. In contrast to typical IKH, which is confined to young children, KH may persist into adulthood in the KH-only phenotype of PHKA2.


Glycogen Storage Disease/genetics , Hepatomegaly/genetics , Hypoglycemia/genetics , Phosphorylase Kinase/genetics , Propionic Acidemia/genetics , Adolescent , Adult , Child , Child, Preschool , Diagnosis, Differential , Female , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/pathology , Hepatomegaly/diagnosis , Hepatomegaly/pathology , High-Throughput Nucleotide Sequencing , Humans , Hypoglycemia/diagnosis , Hypoglycemia/pathology , Male , Mutation, Missense/genetics , Pedigree , Phenotype , Propionic Acidemia/diagnosis , Propionic Acidemia/epidemiology , Propionic Acidemia/pathology , Exome Sequencing , Young Adult
3.
J Med Chem ; 64(8): 5037-5048, 2021 04 22.
Article En | MEDLINE | ID: mdl-33848153

Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, caused by a deficiency in the enzymes P-CoA carboxylase and methylmalonyl-CoA (M-CoA) mutase, respectively. PA and MMA are classified as intoxication-type inborn errors of metabolism because the intramitochondrial accumulation of P-CoA, M-CoA, and other metabolites results in secondary inhibition of multiple pathways of intermediary metabolism, leading to organ dysfunction and failure. Herein, we describe the structure-activity relationships of a series of short-chain carboxylic acids which reduce disease-related metabolites in PA and MMA primary hepatocyte disease models. These studies culminated in the identification of 2,2-dimethylbutanoic acid (10, HST5040) as a clinical candidate for the treatment of PA and MMA. Additionally, we describe the in vitro and in vivo absorption, distribution, metabolism, and excretion profile of HST5040, data from preclinical studies, and the synthesis of the sodium salt of HST5040 for clinical trials.


Amino Acid Metabolism, Inborn Errors/drug therapy , Butyrates/therapeutic use , Propionic Acidemia/drug therapy , Acyl Coenzyme A/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Area Under Curve , Butyrates/chemistry , Butyrates/metabolism , Cells, Cultured , Dogs , Drug Evaluation, Preclinical , Half-Life , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Mice , Models, Biological , Propionic Acidemia/pathology , ROC Curve , Rats , Structure-Activity Relationship
4.
Mol Genet Metab ; 133(1): 71-82, 2021 05.
Article En | MEDLINE | ID: mdl-33741272

Propionic Acidemia (PA) and Methylmalonic Acidemia (MMA) are inborn errors of metabolism affecting the catabolism of valine, isoleucine, methionine, threonine and odd-chain fatty acids. These are multi-organ disorders caused by the enzymatic deficiency of propionyl-CoA carboxylase (PCC) or methylmalonyl-CoA mutase (MUT), resulting in the accumulation of propionyl-coenzyme A (P-CoA) and methylmalonyl-CoA (M-CoA in MMA only). Primary metabolites of these CoA esters include 2-methylcitric acid (MCA), propionyl-carnitine (C3), and 3-hydroxypropionic acid, which are detectable in both PA and MMA, and methylmalonic acid, which is detectable in MMA patients only (Chapman et al., 2012). We deployed liver cell-based models that utilized PA and MMA patient-derived primary hepatocytes to validate a small molecule therapy for PA and MMA patients. The small molecule, HST5040, resulted in a dose-dependent reduction in the levels of P-CoA, M-CoA (in MMA) and the disease-relevant biomarkers C3, MCA, and methylmalonic acid (in MMA). A putative working model of how HST5040 reduces the P-CoA and its derived metabolites involves the conversion of HST5040 to HST5040-CoA driving the redistribution of free and conjugated CoA pools, resulting in the differential reduction of the aberrantly high P-CoA and M-CoA. The reduction of P-CoA and M-CoA, either by slowing production (due to increased demands on the free CoA (CoASH) pool) or enhancing clearance (to replenish the CoASH pool), results in a net decrease in the CoA-derived metabolites (C3, MCA and MMA (MMA only)). A Phase 2 study in PA and MMA patients will be initiated in the United States.


Amino Acid Metabolism, Inborn Errors/drug therapy , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Mutase/genetics , Propionic Acidemia/drug therapy , Small Molecule Libraries/pharmacology , Acyl Coenzyme A/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/pathology , Carnitine/metabolism , Cell Line , Citrates/metabolism , Hepatocytes/drug effects , Humans , Methylmalonyl-CoA Mutase/deficiency , Propionic Acidemia/genetics , Propionic Acidemia/pathology
5.
Mol Genet Metab ; 130(3): 183-196, 2020 07.
Article En | MEDLINE | ID: mdl-32451238

Propionic acidemia (PA) and methylmalonic acidemia (MMA) are autosomal recessive disorders of propionyl-CoA (P-CoA) catabolism, which are caused by a deficiency in the enzyme propionyl-CoA carboxylase or the enzyme methylmalonyl-CoA (MM-CoA) mutase, respectively. The functional consequence of PA or MMA is the inability to catabolize P-CoA to MM-CoA or MM-CoA to succinyl-CoA, resulting in the accumulation of P-CoA and other metabolic intermediates, such as propionylcarnitine (C3), 3-hydroxypropionic acid, methylcitric acid (MCA), and methylmalonic acid (only in MMA). P-CoA and its metabolic intermediates, at high concentrations found in PA and MMA, inhibit enzymes in the first steps of the urea cycle as well as enzymes in the tricarboxylic acid (TCA) cycle, causing a reduction in mitochondrial energy production. We previously showed that metabolic defects of PA could be recapitulated using PA patient-derived primary hepatocytes in a novel organotypic system. Here, we sought to investigate whether treatment of normal human primary hepatocytes with propionate would recapitulate some of the biochemical features of PA and MMA in the same platform. We found that high levels of propionate resulted in high levels of intracellular P-CoA in normal hepatocytes. Analysis of TCA cycle intermediates by GC-MS/MS indicated that propionate may inhibit enzymes of the TCA cycle as shown in PA, but is also incorporated in the TCA cycle, which does not occur in PA. To better recapitulate the disease phenotype, we obtained hepatocytes derived from livers of PA and MMA patients. We characterized the PA and MMA donors by measuring key proximal biomarkers, including P-CoA, MM-CoA, as well as clinical biomarkers propionylcarnitine-to-acetylcarnitine ratios (C3/C2), MCA, and methylmalonic acid. Additionally, we used isotopically-labeled amino acids to investigate the contribution of relevant amino acids to production of P-CoA in models of metabolic stability or acute metabolic crisis. As observed clinically, we demonstrated that the isoleucine and valine catabolism pathways are the greatest sources of P-CoA in PA and MMA donor cells and that each donor showed differential sensitivity to isoleucine and valine. We also studied the effects of disodium citrate, an anaplerotic therapy, which resulted in a significant increase in the absolute concentration of TCA cycle intermediates, which is in agreement with the benefit observed clinically. Our human cell-based PA and MMA disease models can inform preclinical drug discovery and development where mouse models of these diseases are inaccurate, particularly in well-described species differences in branched-chain amino acid catabolism.


Amino Acid Metabolism, Inborn Errors/pathology , Amino Acids/metabolism , Citrates/metabolism , Citric Acid Cycle , Hepatocytes/pathology , Methylmalonic Acid/metabolism , Propionic Acidemia/pathology , Amino Acid Metabolism, Inborn Errors/drug therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Case-Control Studies , Cells, Cultured , Citric Acid/pharmacology , Hepatocytes/metabolism , Humans , In Vitro Techniques , Methylmalonyl-CoA Decarboxylase/metabolism , Methylmalonyl-CoA Mutase/deficiency , Propionates/pharmacology , Propionic Acidemia/drug therapy , Propionic Acidemia/metabolism
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165682, 2020 05 01.
Article En | MEDLINE | ID: mdl-31931102

Propionic acidemia is caused by lack of propionyl-CoA carboxylase activity. It is biochemically characterized by accumulation of propionic (PA) and 3-hydroxypropionic (3OHPA) acids and clinically by severe encephalopathy and cardiomyopathy. High urinary excretion of maleic acid (MA) and 2-methylcitric acid (2MCA) is also found in the affected patients. Considering that the underlying mechanisms of cardiac disease in propionic acidemia are practically unknown, we investigated the effects of PA, 3OHPA, MA and 2MCA (0.05-5 mM) on important mitochondrial functions in isolated rat heart mitochondria, as well as in crude heart homogenates and cultured cardiomyocytes. MA markedly inhibited state 3 (ADP-stimulated), state 4 (non-phosphorylating) and uncoupled (CCCP-stimulated) respiration in mitochondria supported by pyruvate plus malate or α-ketoglutarate associated with reduced ATP production, whereas PA and 3OHPA provoked less intense inhibitory effects and 2MCA no alterations at all. MA-induced impaired respiration was attenuated by coenzyme A supplementation. In addition, MA significantly inhibited α-ketoglutarate dehydrogenase activity. Similar data were obtained in heart crude homogenates and permeabilized cardiomyocytes. MA, and PA to a lesser degree, also decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and Ca2+ retention capacity, and caused swelling in Ca2+-loaded mitochondria. Noteworthy, ΔΨm collapse and mitochondrial swelling were fully prevented or attenuated by cyclosporin A and ADP, indicating the involvement of mitochondrial permeability transition. It is therefore proposed that disturbance of mitochondrial energy and calcium homeostasis caused by MA, as well as by PA and 3OHPA to a lesser extent, may be involved in the cardiomyopathy commonly affecting propionic acidemic patients.


Maleates/metabolism , Mitochondria, Heart/pathology , Myoblasts, Cardiac/pathology , Propionates/metabolism , Animals , Calcium/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Fractionation , Cell Line , Energy Metabolism , Humans , Male , Mitochondria, Heart/metabolism , Mitochondrial Swelling , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/metabolism , Oxygen/analysis , Oxygen/metabolism , Propionic Acidemia/complications , Propionic Acidemia/metabolism , Propionic Acidemia/pathology , Rats
7.
Stem Cell Res ; 38: 101469, 2019 07.
Article En | MEDLINE | ID: mdl-31132581

A human induced pluripotent stem cell (iPSC) line was generated from fibroblasts of a patient with propionic acidemia that has a homozygous mutation (c.1218_1231del14ins12 (p.G407 fs)) in the PCCB gene. Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stability. The generated iPSC line represents a useful tool to study the pathomechanisms underlying the deficiency.


Homozygote , Induced Pluripotent Stem Cells , Methylmalonyl-CoA Decarboxylase , Mutation , Propionic Acidemia , Cell Line , Humans , Induced Pluripotent Stem Cells/enzymology , Induced Pluripotent Stem Cells/pathology , Kruppel-Like Factor 4 , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Propionic Acidemia/enzymology , Propionic Acidemia/genetics , Propionic Acidemia/pathology
8.
Mol Genet Metab ; 125(3): 266-275, 2018 11.
Article En | MEDLINE | ID: mdl-30274917

Propionic acidemia (PA) is caused by mutations in the PCCA and PCCB genes, encoding α and ß subunits, respectively, of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). Up to date, >200 pathogenic mutations have been identified, mostly missense defects. Genetic analysis in PA patients referred to the laboratory for the past 15 years identified 20 novel variants in the PCCA gene and 14 in the PCCB gene. 21 missense variants were predicted as probably disease-causing by different bioinformatics algorithms. Structural analysis in the available 3D model of the PCC enzyme indicated potential instability for most of them. Functional analysis in a eukaryotic system confirmed the pathogenic effect for the missense variants and for one amino acid deletion, as they all exhibited reduced or null PCC activity and protein levels compared to wild-type constructs. PCCB variants p.E168del, p.Q58P and p.I460T resulted in medium-high protein levels and no activity. Variants p.R230C and p.C712S in PCCA, and p.G188A, p.R272W and p.H534R in PCCB retained both partial PCC activity and medium-high protein levels. Available patients-derived fibroblasts carriers of some of these mutations were grown at 28 °C or 37 °C and a slight increase in PCC activity or protein could be detected in some cases at the folding-permissive conditions. Examination of available clinical data showed correlation of the results of the functional analysis with disease severity for most mutations, with some notable exceptions, confirming the notion that the final phenotypic outcome in PA is not easily predicted.


Genetic Predisposition to Disease , Methylmalonyl-CoA Decarboxylase/genetics , Propionic Acidemia/genetics , Structure-Activity Relationship , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Genotype , Humans , Infant , Infant, Newborn , Male , Methylmalonyl-CoA Decarboxylase/chemistry , Mitochondria/enzymology , Mitochondria/genetics , Mutation, Missense/genetics , Neonatal Screening , Propionic Acidemia/pathology , Protein Conformation , Protein Folding , Young Adult
9.
Stem Cell Res ; 23: 173-177, 2017 08.
Article En | MEDLINE | ID: mdl-28925364

Human induced pluripotent stem cell (iPSC) line was generated from fibroblasts of a patient with propionic acidemia carrying mutations in the PCCA gene: c.1899+4_1899+7delAGTA; p.(Cys616_Val633del) and c.1430--?_1643+?del; p.(Gly477Glufs*9). Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stability.


Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/pathology , Methylmalonyl-CoA Decarboxylase/genetics , Propionic Acidemia/pathology , Base Sequence , Cell Line , Humans , Kruppel-Like Factor 4 , Reproducibility of Results
10.
Sci Rep ; 7(1): 5727, 2017 07 18.
Article En | MEDLINE | ID: mdl-28720782

miRNome expression profiling was performed in a mouse model of propionic acidemia (PA) and in patients' plasma samples to investigate the role of miRNAs in the pathophysiology of the disease and to identify novel biomarkers and therapeutic targets. PA is a potentially lethal neurometabolic disease with patients developing neurological deficits and cardiomyopathy in the long-term, among other complications. In the PA mouse liver we identified 14 significantly dysregulated miRNAs. Three selected miRNAs, miR-34a-5p, miR-338-3p and miR-350, were found upregulated in brain and heart tissues. Predicted targets involved in apoptosis, stress-signaling and mitochondrial function, were inversely found down-regulated. Functional analysis with miRNA mimics in cellular models confirmed these findings. miRNA profiling in plasma samples from neonatal PA patients and age-matched control individuals identified a set of differentially expressed miRNAs, several were coincident with those identified in the PA mouse, among them miR-34a-5p and miR-338-3p. These two miRNAs were also found dysregulated in childhood and adult PA patients' cohorts. Taken together, the results reveal miRNA signatures in PA useful to identify potential biomarkers, to refine the understanding of the molecular mechanisms of this rare disease and, eventually, to improve the management of patients.


Gene Expression Regulation , MicroRNAs/analysis , MicroRNAs/blood , Propionic Acidemia/pathology , Propionic Acidemia/physiopathology , Animals , Brain/pathology , Disease Models, Animal , Gene Expression Profiling , Humans , Infant, Newborn , Liver/pathology , Mice , Myocardium/pathology , Plasma/chemistry
11.
Free Radic Biol Med ; 96: 1-12, 2016 07.
Article En | MEDLINE | ID: mdl-27083476

Accumulation of toxic metabolites has been described to inhibit mitochondrial enzymes, thereby inducing oxidative stress in propionic acidemia (PA), an autosomal recessive metabolic disorder caused by the deficiency of mitochondrial propionyl-CoA carboxylase. PA patients exhibit neurological deficits and multiorgan complications including cardiomyopathy. To investigate the role of mitochondrial dysfunction in the development of these alterations we have used a hypomorphic mouse model of PA that mimics the biochemical and clinical hallmarks of the disease. We have studied the tissue-specific bioenergetic signature by Reverse Phase Protein Microarrays and analysed OXPHOS complex activities, mtDNA copy number, oxidative damage, superoxide anion and hydrogen peroxide levels. The results show decreased levels and/or activity of several OXPHOS complexes in different tissues of PA mice. An increase in mitochondrial mass and OXPHOS complexes was observed in brain, possibly reflecting a compensatory mechanism including metabolic reprogramming. mtDNA depletion was present in most tissues analysed. Antioxidant enzymes were also found altered. Lipid peroxidation was present along with an increase in hydrogen peroxide and superoxide anion production. These data support the hypothesis that oxidative damage may contribute to the pathophysiology of PA, opening new avenues in the identification of therapeutic targets and paving the way for in vivo evaluation of compounds targeting mitochondrial biogenesis or reactive oxygen species production.


Methylmalonyl-CoA Decarboxylase/genetics , Mitochondria/genetics , Oxidative Stress/genetics , Propionic Acidemia/genetics , Animals , Antioxidants/metabolism , DNA, Mitochondrial/genetics , Disease Models, Animal , Homeostasis , Humans , Hydrogen Peroxide/metabolism , Lipid Peroxidation/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Mice , Mitochondria/metabolism , Mitochondria/pathology , Oxidation-Reduction , Propionic Acidemia/pathology , Protein Array Analysis , Reactive Oxygen Species/metabolism , Superoxides/metabolism
12.
Hum Mol Genet ; 24(24): 7049-59, 2015 Dec 15.
Article En | MEDLINE | ID: mdl-26420839

Methylmalonic acidurias (MMAurias) are a group of inherited disorders in the catabolism of branched-chain amino acids, odd-chain fatty acids and cholesterol caused by complete or partial deficiency of methylmalonyl-CoA mutase (mut(0) and mut(-) subtype respectively) and by defects in the metabolism of its cofactor 5'-deoxyadenosylcobalamin (cblA, cblB or cblD variant 2 type). A long-term complication found in patients with mut(0) and cblB variant is chronic tubulointerstitial nephritis. The underlying pathomechanism has remained unknown. We established an in vitro model of tubular epithelial cells from patient urine (hTEC; 9 controls, 5 mut(0), 1 cblB). In all human tubular epithelial cell (hTEC) lines we found specific tubular markers (AQP1, UMOD, AQP2). Patient cells showed disturbance of energy metabolism in glycolysis, mitochondrial respiratory chain and Krebs cycle in concert with increased reactive oxygen species (ROS) formation. Electron micrographs indicated increased autophagosome production and endoplasmic reticulum stress, which was supported by positive acridine orange staining and elevated levels of LC3 II, P62 and pIRE1. Screening mTOR signaling revealed a release of inhibition of autophagy. Patient hTEC produced and secreted elevated amounts of the pro-inflammatory cytokine IL8, which was highly correlated with the acridine orange staining. Summarizing, hTEC of MMAuria patients are characterized by disturbed energy metabolism and ROS production that lead to increased autophagy and IL8 secretion.


Amino Acid Metabolism, Inborn Errors/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/ultrastructure , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/urine , Autophagy , Cell Line , Cell Line, Transformed , Child , Child, Preschool , Energy Metabolism , Epithelial Cells/pathology , Humans , Infant , Interleukin-8/metabolism , Nephritis, Interstitial/metabolism , Nephritis, Interstitial/pathology , Phenotype , Propionic Acidemia/pathology , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism , Urine/cytology , Young Adult
13.
Biochem Biophys Res Commun ; 452(3): 457-61, 2014 Sep 26.
Article En | MEDLINE | ID: mdl-25159844

Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. Most PA patients present in the neonatal period with metabolic acidosis and hyperammonemia, developing different neurological symptoms, movement disorders and cardiac complications. There is strong evidence indicating that oxidative damage could be a pathogenic factor in neurodegenerative, mitochondrial and metabolic diseases. Recently, we identified an increase in ROS levels in PA patients-derived fibroblasts. Here, we analyze the capability of seven antioxidants to scavenge ROS production in PA patients' cells. Tiron, trolox, resveratrol and MitoQ significantly reduced ROS content in patients and controls' fibroblasts. In addition, changes in the expression of two antioxidant enzymes, superoxide dismutase and glutathione peroxidase, were observed in PA patients-derived fibroblasts after tiron and resveratrol treatment. Our results in PA cellular models establish the proof of concept of the potential of antioxidants as an adjuvant therapy for PA and pave the way for future assessment of antioxidant strategies in the murine model of PA.


Antioxidants/pharmacology , Fibroblasts/drug effects , Mitochondria/drug effects , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology , Chromans/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression/drug effects , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Humans , Methylmalonyl-CoA Decarboxylase/genetics , Mitochondria/metabolism , Mutation , Organophosphorus Compounds/pharmacology , Primary Cell Culture , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Propionic Acidemia/pathology , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Resveratrol , Stilbenes/pharmacology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Glutathione Peroxidase GPX1
14.
Mol Genet Metab ; 109(4): 397-401, 2013 Aug.
Article En | MEDLINE | ID: mdl-23791308

Propionic acidaemia (PA) results from propionyl-CoA carboxylase deficiency. During metabolic decompensation, the accumulation of propionyl-CoA causes secondary hyperammonaemia through N-acetylglutamate synthetase inactivation. Carglumic acid, a structural analogue of N-acetylglutamate, was given to patients with PA (n=3) during episodes of metabolic decompensation (n=8; age range: birth to 4years), in addition to high energy/low protein intake and carnitine. Plasma ammonia concentrations normalised within 6-19h. Carglumic acid was well tolerated with no side effects noted.


Glutamates/administration & dosage , Hyperammonemia/drug therapy , Methylmalonyl-CoA Decarboxylase/genetics , Propionic Acidemia/drug therapy , Amino Acid Metabolism, Inborn Errors , Ammonia/blood , Carnitine/blood , Child, Preschool , Female , Glutamates/adverse effects , Humans , Hyperammonemia/complications , Hyperammonemia/pathology , Infant , Infant, Newborn , Male , Methylmalonyl-CoA Decarboxylase/metabolism , Propionic Acidemia/complications , Propionic Acidemia/pathology
15.
Orphanet J Rare Dis ; 8: 6, 2013 Jan 10.
Article En | MEDLINE | ID: mdl-23305374

BACKGROUND: Propionic acidemia is an inherited disorder caused by deficiency of propionyl-CoA carboxylase. Although it is one of the most frequent organic acidurias, information on the outcome of affected individuals is still limited. STUDY DESIGN/METHODS: Clinical and outcome data of 55 patients with propionic acidemia from 16 European metabolic centers were evaluated retrospectively. 35 patients were diagnosed by selective metabolic screening while 20 patients were identified by newborn screening. Endocrine parameters and bone age were evaluated. In addition, IQ testing was performed and the patients' and their families' quality of life was assessed. RESULTS: The vast majority of patients (>85%) presented with metabolic decompensation in the neonatal period. Asymptomatic individuals were the exception. About three quarters of the study population was mentally retarded, median IQ was 55. Apart from neurologic symptoms, complications comprised hematologic abnormalities, cardiac diseases, feeding problems and impaired growth. Most patients considered their quality of life high. However, according to the parents' point of view psychic problems were four times more common in propionic acidemia patients than in healthy controls. CONCLUSION: Our data show that the outcome of propionic acidemia is still unfavourable, in spite of improved clinical management. Many patients develop long-term complications affecting different organ systems. Impairment of neurocognitive development is of special concern. Nevertheless, self-assessment of quality of life of the patients and their parents yielded rather positive results.


Propionic Acidemia/pathology , Adolescent , Child , Child, Preschool , Cognition , Female , Humans , Infant , Intellectual Disability , Male , Propionic Acidemia/psychology , Propionic Acidemia/therapy , Psychomotor Performance , Quality of Life , Retrospective Studies , Treatment Outcome
17.
Mol Genet Metab ; 105(1): 5-9, 2012 Jan.
Article En | MEDLINE | ID: mdl-21986446

Propionic acidemia is an organic acidemia that can lead to metabolic acidosis, coma and death, if not treated appropriately in the acute setting. Recent advancements in treatment have allowed patients with propionic acidemia to live beyond the neonatal period and acute presentation. The natural history of the disease is just beginning to be elucidated as individuals reach older ages. Recent studies have identified the genomic mutations in the genes PCCA and PCCB. However, as of yet no clear genotype-phenotype correlations are known. As patients age, the natural progression of propionic acidemia illuminates intellectual difficulties, increased risk for neurological complications, including stroke-like episodes, cardiac complications, and gastrointestinal difficulties, as well as a number of other complications. This article reviews the available literature for the natural history of propionic acidemia.


Disease Progression , Propionic Acidemia/pathology , Genetic Association Studies , Humans , Propionic Acidemia/complications , Propionic Acidemia/genetics , Propionic Acidemia/immunology
18.
Mol Genet Metab ; 105(1): 10-5, 2012 Jan.
Article En | MEDLINE | ID: mdl-22078457

Propionic acidemia (PA) is an organic acidemia which has a broad range of neurological complications, including developmental delay, intellectual disability, structural abnormalities, metabolic stroke-like episodes, seizures, optic neuropathy, and cranial nerve abnormalities. As the PA consensus conference hosted by Children's National Medical Center progressed from January 28 to 30, 2011, it became evident that neurological complications were common and a major component of morbidity, but the role of imaging and the basis for brain pathophysiology were unclear. This paper reviews the hypothesized pathophysiology, presentation and uses the best available evidence to suggest programs for treatment, imaging, and monitoring the neurological complications of PA.


Nervous System/pathology , Propionic Acidemia/pathology , Health Planning Guidelines , Humans , Intellectual Disability , Nervous System/physiopathology , Neuroimaging , Propionic Acidemia/physiopathology , Propionic Acidemia/therapy , Treatment Outcome
20.
J Assist Reprod Genet ; 28(3): 211-6, 2011 Mar.
Article En | MEDLINE | ID: mdl-21125326

PURPOSE: Development of an ad hoc protocol for the preimplantion genetic diagnosis of propionic acidemia in a couple carrying the mutations c.737G>T (G246V) and c.1218del14ins12 (ins/del) in the PCCB gene. Propionic acidemia is an autosomal recessive metabolic disorder where the body is unable to process certain parts of proteins and lipids. Symptoms manifest few days after birth and sometimes progress to more serious medical problems, including heart abnormalities, coma and death. METHODS: Four short tandem repeat markers closely linked to the PCCB gene were tested, in order to support the direct mutation detection diagnosis. Multiplex fluorescent heminested polymerase chain reaction followed by fragment analysis and minisequencing was used. RESULTS: Fourteen single blastomeres from nine embryos were tested and two carrier embryos were transferred, resulting in the birth of two healthy boys. CONCLUSIONS: Preimplantation genetic diagnosis represents a valid reproductive option for couples affected of propionic acidemia, in order to avoid transmission to offspring.


Pregnancy Outcome , Preimplantation Diagnosis , Propionic Acidemia/genetics , Twins , Adult , Female , Humans , Male , Methylmalonyl-CoA Decarboxylase/genetics , Microsatellite Repeats , Mutation , Pedigree , Pregnancy , Propionic Acidemia/diagnosis , Propionic Acidemia/pathology
...